A Note on the Augmented Hessian Whenthe Reduced Hessian is Semide

نویسنده

  • Margaret H. Wright
چکیده

Certain matrix relationships play an important role in optimality conditions and algorithms for nonlinear and semideenite programming. Let H be an n n symmetric matrix, A an m n matrix, and Z a basis for the null space of A. (In the context of optimization, H is the Hessian of a smooth function and A is the Jacobian of a set of constraints.) When the reduced Hessian Z T HZ is positive deenite, augmented Lagrangian methods rely on the known existence of a nite such that, for all > , the augmented Hessian H +A T A is positive deenite. In this note we analyze the case when Z T HZ is positive semideenite, i.e. singularity is allowed, and show that the situation is more complicated. In particular, we give a simple necessary and suucient condition for the existence of a nite so that H + A T A is positive semideenite for. A corollary of our result is that if H is nonsingular and indeenite while Z T HZ is positive semideenite and singular, no such exists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Approximation of the Hessian of the Lagrangian

In the context of SQP methods or, more recently, of sequential semidefinite programming methods, it is common practice to construct a positive semidefinite approximation of the Hessian of the Lagrangian. The Hessian of the augmented Lagrangian is a suitable approximation as it maintains local superlinear convergence under appropriate assumptions. In this note we give a simple example that the o...

متن کامل

Edge Detection with Hessian Matrix Property Based on Wavelet Transform

In this paper, we present an edge detection method based on wavelet transform and Hessian matrix of image at each pixel. Many methods which based on wavelet transform, use wavelet transform to approximate the gradient of image and detect edges by searching the modulus maximum of gradient vectors. In our scheme, we use wavelet transform to approximate Hessian matrix of image at each pixel, too. ...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Hessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications

In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999